Chapter 6 : Triangles

1. Similar Triangles:- Two triangles are said to be similar, if
(a) their corresponding angles are equal and
(b) their corresponding sides are in proportion (or are in the same ration).
2. Basic proportionality Theorem [or Thales theorem].
3. Converse of Basic proportionality Theorem.
4. Criteria for similarity of Triangles.
(a) AA or AAA similarity criterion.
(b) SAS similarity criterion.
(c) SSS similarity criterion.
5. Areas of similar triangles.
6. Pythagoras theorem.
7. Converse of Pythagoras theorem
8. $A B C$ is a right-angled triangle, right-angled at A. A circle is inscribed in it. The lengths of the two sides containing the right angle are 6 cm and 8 cm . Find the radius of the in circle.
(Ans: $r=2$)

Ans: $\quad \mathrm{BC}=10 \mathrm{~cm}$
$y+z=8 \mathrm{~cm}$
$x+z=6 \mathrm{~cm}$
$x+y=10$
$\Rightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}=12$
$\mathrm{z}=12-10$
$\mathrm{z}=2 \mathrm{~cm}$
\therefore radius $=2 \mathrm{~cm}$
2. $A B C$ is a triangle. $P Q$ is the line segment intersecting $A B$ in P and $A C$ in Q such that $P Q$ parallel to $B C$ and divides triangle $A B C$ into two parts equal in area. Find $B P: A B$.

Ans: Refer example problem of text book.
3. In a right triangle $A B C$, right angled at C, P and Q are points of the sides $C A$ and $C B$ respectively, which divide these sides in the ratio 2: 1 . Prove that
$9 A Q^{2}=9 A C^{2}+4 B C^{2}$
$9 B P^{2}=9 B C^{2}+4 A C^{2}$
$9\left(A Q^{2}+B P^{2}\right)=13 A B^{2}$

Ans: Since P divides AC in the ratio $2: 1$
$C P=\frac{2}{3} A C \quad Q C=\frac{2}{3} B C$
$\mathrm{AQ}^{2}=\mathrm{QC}^{2}+\mathrm{AC}^{2}$

$\mathrm{AQ}^{2}=\frac{4}{9} \mathrm{BC}^{2}+\mathrm{AC}^{2}$
$9 \mathrm{AQ}^{2}=4 \mathrm{BC}^{2}+9 \mathrm{AC}^{2}$
Similarly we get $9 \mathrm{BP}^{2}=9 \mathrm{BC}^{2}+4 A \mathrm{C}^{2}$

Adding (1) and (2) we get $9\left(\mathrm{AQ}^{2}+\mathrm{BP}^{2}\right)=13 \mathrm{AB}^{2}$
4. P and Q are the mid points on the sides $C A$ and $C B$ respectively of triangle $A B C$ right angled at C.

Prove that $4\left(A Q^{2}+B P^{2}\right)=5 A B^{2}$

Self Practice

5. In an equilateral triangle $A B C$, the side $B C$ is trisected at D.

Prove that $9 A D^{2}=7 A B^{2}$

Self Practice

6. There is a staircase as shown in figure connecting points A and B. Measurements of steps are marked in the figure. Find the straight distance between A and B.
(Ans:10)

Ans: Apply Pythagoras theorem for each right triangle add to get length of $A B$.
7. Find the length of the second diagonal of a rhombus, whose side is 5 cm and one of the diagonals is
6 cm . (Ans: 8 cm)
Ans: Length of the other diagonal
$=2(\mathrm{BO})$ where $\mathrm{BO}=4 \mathrm{~cm}$
$\therefore \mathrm{BD}=8 \mathrm{~cm}$.
8. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.

Ans: To prove $3(A B 2+B C 2+C A 2)=4(A D 2+B E 2+C F 2)$
In any triangle sum of squares of any two sides is equal to twice the square of half of third side, together with twice the square of medianbisecting it

If AD is the median
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left\{A D^{2}+\frac{B C^{2}}{4}\right\}$
$2\left(\mathrm{AB}^{2}+\mathrm{AC}^{2}\right)=4 \mathrm{AD}^{2}+\mathrm{BC}^{2}$
Similarly by taking $\mathrm{BE} \& \mathrm{CF}$ as medians we get
$\Rightarrow 2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}\right)=4 \mathrm{BE}^{2}+\mathrm{AC}^{2}$
\& $2\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right)=4 \mathrm{CF}^{2}+\mathrm{AB}^{2}$
Adding we get
$=3\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}\right)=4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)$

9. $A B C$ is an isosceles triangle is which $A B=A C=10 \mathrm{~cm} \cdot B C=12$. $P Q R S$ is a rectangle inside the isosceles triangle. Given $\mathrm{PQ}=\mathrm{SR}=\mathrm{ycm}, \mathrm{PS}=\mathrm{QR}=2 \mathrm{x}$. Prove
that $x=6-\frac{3 y}{4}$.

Ans: $\mathrm{AL}=8 \mathrm{~cm}$
$\triangle \mathrm{BPQ}-\triangle \mathrm{BAL}$
$\Rightarrow \frac{B Q}{P Q}=\frac{B L}{A L}$
$\Rightarrow \frac{6-x}{y}=\frac{6}{8}$

$$
\begin{aligned}
& \Rightarrow x=6-\frac{v y}{4} . \\
& \text { Hence proved }
\end{aligned}
$$

10. If $A B C$ is an obtuse angled triangle, obtuse angled at B and if $A D \perp C B$

Prove that $\mathrm{AC} 2=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BCxBD}$
Ans: $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
$=A D^{2}+(B C+B D)^{2}$
$=A D^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \cdot \mathrm{BD}+\mathrm{BD}^{2}$
$=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \cdot \mathrm{BD}$

11. If $A B C$ is an acute angled triangle, acute angled at B an $A D \perp B C$ prove that $A C^{2}=A B^{2}+B C^{2}$ $-2 B C \times B D$
Ans: Proceed as sum no. 10.
12. Prove that in any triangle the sum of the squares of any two sides is equal to twice the square of half of the third side together with twice the square of the median, which bisects the third side.

Ans: To prove $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+2\left(\frac{1}{2} B C\right)^{2}$
Draw $\mathrm{AE} \perp \mathrm{BC}$
Apply property of Q. No. 10 \& 11 .
In $\triangle \mathrm{ABD}$ since $\angle \mathrm{D}>90^{\circ}$
$\therefore \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}+2 \mathrm{BD} \times \mathrm{DE} \ldots .(1)$
$\triangle \mathrm{ACD}$ since $\angle \mathrm{D}<90^{\circ}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{DE}$
Adding (1) \& (2)
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$

$$
=2\left(\mathrm{AD}^{2}+\left(\frac{1}{2} B C\right)^{2}\right)
$$

Or $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)$
Hence proved

13. If A be the area of a right triangle and b one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is $\frac{2 A b}{\sqrt{b^{4}+4 A^{2}}}$

Ans: Let $\mathrm{QR}=\mathrm{b}$
$\mathrm{A}=\operatorname{Ar}(\triangle \mathrm{PQR})$
$\mathrm{A}=\frac{1}{2} \times \mathrm{b} \times \mathrm{PQ}$
$\mathrm{PQ}=\frac{2 A}{b}$
$\Delta \mathrm{PNQ}-\triangle \mathrm{PQR}(\mathrm{AA})$
$\Rightarrow \frac{P Q}{P R}=\frac{N Q}{Q R}$.
From $\triangle \mathrm{PQR}$
$\mathrm{PQ}^{2}+\mathrm{QR}^{2}=\mathrm{PR}^{2}$
$\frac{4 A^{2}}{b^{2}}+\mathrm{b}^{2}=\mathrm{PR}^{2}$
$\mathrm{PR}=\sqrt{\frac{4 A^{2}+b^{4}}{b^{2}}}=\frac{\sqrt{4 A^{2}+b^{4}}}{b}$
Equation (2) becomes
$\frac{2 A}{b x P R}=\frac{N Q}{b}$
$\mathrm{NQ}=\frac{2 A}{P R}$
$\mathrm{NQ}=\frac{2 A b}{\sqrt{4 A^{2}+b^{4}}}$ Ans

14. ABC is a right triangle right-angled at C and $\mathrm{AC}=\sqrt{3} \mathrm{BC}$. Prove that $\angle \mathrm{ABC}=60^{\circ}$.

Ans: $\quad \operatorname{Tan} \mathrm{B}=\frac{A C}{B C}$

Tan $\mathrm{B}=\frac{\sqrt{3} B C}{B C}$
$\operatorname{Tan} B=\sqrt{3}$
$\Rightarrow \operatorname{Tan} \mathrm{B}=\operatorname{Tan} 60$
$\Rightarrow \mathrm{B}=60^{\circ}$

$\Rightarrow \angle \mathrm{ABC}=60^{\circ}$
Hence proved
15. ABCD is a rectangle. $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABF}$ are two triangles such that $\angle \mathrm{E}=\angle \mathrm{F}$ as shown in the figure. Prove that $\mathrm{AD} \times \mathrm{AF}=\mathrm{AE} \times \mathrm{AB}$.
Ans: Consider $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABF}$
$\angle \mathrm{D}=\angle \mathrm{B} \quad=90^{\circ}$
$\angle \mathrm{E}=\angle \mathrm{F} \quad$ (given)
$\therefore \triangle \mathrm{ADE} \cong \triangle \mathrm{ABF}$
$\frac{A D}{A B}=\frac{A E}{A F}$
$\underset{\text { Prever }}{\Rightarrow} \mathrm{AD} \times \mathrm{AF}=\mathrm{AB} \times \mathrm{AE}$
Proved

16. In the given figure, $\angle \mathrm{AEF}=\angle \mathrm{AFE}$ and E is the mid-point of CA . Prove that $\frac{B D}{C D}=\frac{B F}{C E}$

Ans: Draw CG \|DF
In $\triangle \mathrm{BDF}$
CG \| DF

$$
\begin{align*}
& \therefore \frac{B D}{C D}=\frac{\mathrm{BF}}{\mathrm{GF}} \tag{1}\\
& \text { In } \triangle \mathrm{AFE} \\
& \angle \mathrm{AEF}=\angle \mathrm{AFE} \\
& \Rightarrow \mathrm{AF}=\mathrm{AE} \\
& \Rightarrow \mathrm{AF}=\mathrm{AE}=\mathrm{CE}
\end{align*}
$$

In $\triangle \mathrm{ACG}$
E is the mid point of $A C$
$\Rightarrow \mathrm{FG}=\mathrm{AF}$
\therefore From (1) \& (2)

$$
\frac{B D}{C D}=\frac{B F}{C E}
$$

Hence proved

17. $A B C D$ is a parallelogram in the given figure, $A B$ is divided at P and $C D$ and Q so that $A P: P B=3: 2$ and $C Q: Q D=4: 1$. If $P Q$ meets $A C$ at R, prove that $A R$
$=\frac{3}{7} \mathrm{AC}$.

Ans: $\quad \triangle \mathrm{APR} \sim \triangle \mathrm{CQR}(\mathrm{AA})$
$=\frac{A P}{C Q}=\frac{P R}{Q R}=\frac{A R}{C R}$
$\Rightarrow \frac{A P}{C Q}=\frac{A R}{C R} \quad \& \mathrm{AP}=\frac{3}{5} \mathrm{AB}$
$=\frac{3 A B}{5 C Q}=\frac{A R}{C R} \& \mathrm{CQ}=\frac{4}{5} \mathrm{CD}=\frac{4}{5} \mathrm{AB}$
$\Rightarrow \frac{A R}{C R}=\frac{3}{4}$
$\Rightarrow \frac{C R}{A R}=\frac{4}{3}$
$\frac{C R+A R}{A R}=\frac{4}{3}+1$
$\Rightarrow \frac{A C}{A R}=\frac{7}{3}$
$\Rightarrow \mathrm{AR}=\frac{3}{7} \mathrm{AC}$
Hence proved

18. Prove that the area of a rhombus on the hypotenuse of a right-angled triangle, with one of the angles as 60°, is equal to the sum of the areas of rhombuses with one of their angles as 6θ drawn on the other two sides.

Ans: Hint: Area of Rhombus of side a \& one angle of 60°

$$
=\frac{\sqrt{3}}{2} \mathrm{a} \times \mathrm{a}=\frac{\sqrt{3}}{2} \mathrm{a}^{2}
$$

19. An aeroplane leaves an airport and flies due north at a speed of $1000 \mathrm{~km} / \mathrm{h}$. At the same time, another plane leaves the same airport and flies due west at a speed of $1200 \mathrm{~km} / \mathrm{h}$. How far apart will be the two planes after $11 / 2$ hours. (Ans: 300 V 61 Km)
Ans: $\quad \mathrm{ON}=1500 \mathrm{~km}($ dist $=\mathrm{s} \times \mathrm{t})$
$\mathrm{OW}=1800 \mathrm{~km}$
$\mathrm{NW}=\sqrt{1500^{2}+1800^{2}}$
$=\sqrt{5490000}$
$=300 \sqrt{61} \mathrm{~km}$

20. $A B C$ is a right-angled isosceles triangle, right-angled at B. $A P$, the bisector $\circ \angle B A C$, intersects $B C$ at P. Prove that $A C^{2}=A P^{I}+2(1+\sqrt{2}) B_{P}{ }^{2}$
Ans: $\quad A C=\sqrt{ } 2 A B($ Since $A B=B C)$
$\frac{A B}{A C}=\frac{B P}{C P}$ (Bisector Theorem)
$\Rightarrow \mathrm{CP}=\sqrt{2} \mathrm{BP}$
$\mathrm{AC}^{2}-\mathrm{AP}^{2}=\mathrm{AC}^{2}-\left(\mathrm{AB}^{2}+\mathrm{BP}^{2}\right)$
$=\mathrm{AC}^{2}-\mathrm{AB}^{2}-\mathrm{BP}^{2}$
$=\mathrm{BC}^{2}-\mathrm{BP}^{2}$
$=(\mathrm{BP}+\mathrm{PC})^{2}-\mathrm{BP}^{2}$
$=\left(\mathrm{BP}+\sqrt{2} \mathrm{BP}^{2}\right)^{2}-\mathrm{BP}^{2}$
$=2 \mathrm{BP}^{2}+2 \sqrt{2} \mathrm{BP}^{2}$
$=2(\sqrt{2}+1) \mathrm{BP}^{2} \Rightarrow \mathrm{AC}^{2}=\mathrm{AP}^{2}+2(1+\sqrt{2}) \mathrm{BP}^{2}$
Proved

